EXISTENCE OF SOLUTIONS FOR A BOUNDARY
VALUE PROBLEM ON AN INFINITE INTERVAL
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ABSTRACT. Based on a fixed point theorem due to Avery and
Henderson, we prove that a second order boundary value problem
has at least two positive solutions.

1. INTRODUCTION

Some of the most widely used theorems guaranteeing the existence
of one or multiple fixed points are the ones due to Krasnoselskii [19],
Leggett and Williams [10], and Avery and Henderson [3]. Among the
latest additions to this series of theorems are the ones due to Avery,
Henderson and O’Regan [4, 5, 6]. An innovating attempt to unify all
the results mentioned above, carried out by Kwong, can be found in
[9]. Roughly speaking, the essence of all these theorems is to generalize
the Intermediate Value Theorem for real functions of one real variable
to function spaces, which are Banach spaces of infinite dimensions.
One very important aspect of this generalization is to properly transfer
the meaning of the closed interval of the real line to such spaces. An
excellent discussion on this subject can be found in [2, 9, 19].

This paper is a sequel of [15]. The main result presented in [15] is
based on the Krasnoselskii Fixed Point Theorem and provides condi-
tions which guarantee the existence of at least one nonnegative solution
for the boundary value problem studied therein. Our goal in this pa-
per is to achieve multiple solutions for the ordinary version of the same
boundary value problem. To do this, we use a fixed point theorem
due to Avery and Henderson. This theorem, apart from guarantying
the existence of two fixed points, provides some additional information
about them, which varies depending on the way it is used. Here, we
obtain upper or lower boundaries for the values of these fixed points at
two predefined points of their domain.
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Let R be the set of real numbers and R := [0, +c0). Also, for any
interval I C R and any set S C R, by C(I, S) we denote the set of all
continuous functions defined on I, which have values in S. Consider
the second order nonlinear differential equation

(1.1) o' () + f(t,z(t)) =0, teR*
along with the initial condition

(1.2) z(0) =0

and the boundary condition

(1.3) lim @/(t) =€

t—+oo

where f is a real valued function defined on the set R* x R, which is
increasing with respect to its second variable, nonnegative and contin-
uous, and £ is a nonnegative real number.

2. PRELIMINARIES AND LEMMAS

Definition 2.1. A function z € C(R*,R) is a solution of the boundary
value problem (1.1) — (1.3) if z is twice continuously differentiable and
satisfies equation (1.1) and the boundary condition (1.3).

Definition 2.2. Let E be a real Banach space. A cone in E is a
nonempty, closed set P C E such that

(1) ku+ dv € Pforall u,v € P and all 5, A > 0,

(%) u,—u € P implies u = 0.
Definition 2.3. Let P be a cone in a real Banach space E. A functional
¥ : P — Eis said to be increasing on P if ¢(z) < 9)(y), for any z,y € P
with < y, where < is the partial ordering induced to the Banach space
by the cone P, i.e.

z<y ifandonlyif y—ze€P.

Definition 2.4. Let v be a nonnegative functional on a cone P. For
each d > 0, we denote by P (¢, d) the set

P(y,d) :=={z € P: 9¥(z) < d}.

The results of this paper are based on the following fixed point the-
orem, due to Avery and Henderson [3].

Theorem 2.5. Let P be a cone in a real Banach space E. Let o and
7 be increasing, nonnegative, continuous functionals on P, and let 6 be
a nonnegative functional on P with (0) = 0 such that, for some ¢ > 0
and © > 0,

1(z) <6(z) < alz) and =] < O(2),
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for all x € P(v,c). Suppose there exists a completely continuous oper-
ator A : P(vy,c) — P and real constants a,b with 0 < a < b < ¢, such
that

O(Az) < M(z), for 0<A<1 and z€dP(9,b),

and either
(i) v(Az) > ¢, for all z € OP(v,c),
(i) 6(Az) < b, for all z € OP(6,1),
(i11) P(a,a) # 0, and a(Az) > a, for all x € 0P(a, a)
or
(4) v(Az) < ¢, for all z € OP(v,c),
(7)) 8(Az) > b, for all xz € OP(0,b),
(117) P(a,a) #0, and a(Az) < a, for all z € 8P (a, a).

Then A has at least two fized points x1 and z3 belonging to P(y,c) such
that

a < a(z), with 6(z;) <b,

and
b<0(zs), with ~(z2) <c

3. MAIN RESULTS

Let BC(R™*, R) be the Banach space of all bounded continuous real
valued functions on the interval R*, endowed with the sup-norm || - ||
defined by

|u|| := sup |u(t)], for we€ BC(R'R).
t>0
Definition 3.1. A set U of real valued functions defined on the interval
R* is called equiconvergent at oo if all functions in U are convergent

in R at the point co and, in addition, for each € > 0, there exists
T = T(e) > 0 such that, for all functions u € U, it holds

lu(t) — lim u(s)| <€, forevery t>T.
88—
Lemma 3.2. Let U be an equicontinuous and uniformly bounded subset

of the Banach space BC(R*,R). IfU is equiconvergent at 0o, it s also
relatively compact.

Let
E={yecC®R"R): y(t) = O(t) for t = +oo}.
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The set E is a real Banach space endowed with the norm || - ||, defined

by

ly(2)|
t+1’
Also, we define the following set K, which is a cone in FE

lyllz := sup for every y e E.
£>0

K:={z e E: z(0) =0, z(¢) > min{t, 1}||z||z, for t € R,
and z is nondecreasing}.
Let
O0<rm <rp<ry<1
and consider the following functionals
Yz)=z(r), z€K
O(z) =z(rs), z€K

and

a(z) =z(r3), ze€kK.

It is easy to see that o,7 are nonnegative, increasing and continuous
functionals on K, # is nonnegative on K and 8(0) = 0. Also, it is
straightforward that

v(z) < 0(z) < afz),
since z € K is nondecreasing on R*. Furthermore, for any z € K, we
have

v(z) = 2(r1) = ril|z||s,
6]

1
zlle < —v(z), zekK.
™

Additionally, by the definition of 8 it is obvious that
O(Az) =X0(z), 0<A<1, zeEK.
At this point, we state the following assumptions.

(H;) There exists M > £, a continuous function u : R* — R* and a
nondecreasing function L : R™ — R™* such that

fe <udl(fh), teR, yerr

and also

&rq + L(M) [/0“"2 su(s)ds + ry /:j u(s)ds] < M.
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(Hz) There exist a constant d € (0, 1], a continuous function v : R* —
R* and a nondecreasing function w : R — R* such that

fty) > v(wly), telf+oo), yeR™
(Hj3) There exist p;, p3 > 0 such that

Ei(n +1) < éri+w(p) / sv(s)ds + n-/ v(s)ds|,
d [0,r:]N[6,+-00) [r4,00)N[8,+00)
for: =1,3 and

%3(?"3 +1) < Mry < %1(?"1 +1).

Lemma 3.3. Suppose that assumption (Hy) holds and let ¢ > 0. A
function z € K(v,¢€) is a solution of the boundary value problem (1.1)—
(1.3) if and only if = is a fized point of the operator A : K(v,e) —
C(R*,R), defined by the formula

(3.1) Ay(z) =&t + /00 min{t, s} f(s,y(s))ds, for everyt € R,
0

or, equivalently,
(3.2)

Ay(t) = ft—i—fo sf(s,y(s))dsth/too f(s,y(s))ds, foreveryte R™.

Proof. First of all, we will show that operator A is well defined. Indeed,
for any € > 0 and any = € K (v, €) we have

riflzlle < z(r) <€

and

€
|zlle < —.
|

Also, for every t € R™, it holds that
z(t z(o €
O < qup 29 _ppp< £
1 + t U’EIR"" 1 + a T]_
Consequently, for any ¢t € R, using assumption (H;), we have

f@ﬂW)SMﬂLCﬂﬂ)Squ(i>,

1+f i

therefore,

/DDO f(s,2(s))ds < /Dm u(s)L (i) ds =L (:1) fow u(s)ds < oco.

Hence, the formula of operator A makes sense for any z € K (v, ¢).
For the rest of the proof, see [16]. O
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Lemma 3.4. Suppose that assumption (Hy) holds. Then, the operator
A is completely continuous and, for every e > 0, maps K (v, €) into K.

Proof. First, we will show that A maps K (v,¢€) into K. Let z € K (v, ¢).
Then obviously Az(t) > 0 for every t € R*, and Az(0) = 0. Addition-
ally,

(Az)'(t) =&+ ftm f(s,z(s))ds > 0, forevery teR"Y.

Next, we observe that, for any nonnegative real numbers ¢t and o, it

holds
- ;%cr for ¢t € [0, 1],
- alﬁcr for ¢t € [1, 00).
That is '
in{t, 1
(3.3) t> @%a, for every t > 0 and o > 0.
o

Moreover, it is not difficult to verify that, if ¢, s,0 are arbitrary non-
negative real numbers, then

< mj for t
it 41 {GTI min{c,s} for ¢ € [0,1],

o417 min{o, s} for t € [1,00).

Namely, we have

(3.4) min{t, s} >

in{t,1} .
Eli~—}mln{s,a}, for every ¢,s,0 > 0.
o

+1

Since the function f is nonnegative and using (3.3) and (3.4), we obtain,
for every t > 0 and o > 0,

Az(t) =&t + /OOO min{t, s} f(s, z(s))ds

m;nj{:,ll}g m?f’ll}/; min{o, s} f(s, z(s))ds

1 { JLH (ga + /0 " i Sh e, x(s))ds) }

2

, Azx(o)
= il .
min{f, 1} o+1
Therefore,
A
Az(t) > min{¢, 1} sup sc(a)’ for every ¢t > 0,
o>0 041

le.

Az(t) > min{t, 1}||Az||g, for every ¢t > 0.
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Consequently Az € K.

Also, similarly to [16], we can prove that A(K(y,c)) is relatively
compact and A is continuous. So, we have proved that the operator A
is completely continuous. OJ

Theorem 3.5. Suppose that assumptions (Hy)-(Hs) hold. Then the
boundary value problem (1.1)-(1.3) has at least two nondecreasing, con-
cave and positive on R™ solutions x, T such that

z(rs) > '%.%(7"3 + 1), z(ry) < Mrsy
and
#r) < B +1), 3(r) > M.

Proof. Set a = £(r3+ 1), b= Mry and ¢ = & (r; + 1). From Lemma
3.4, we have that A is a completely continuous operator, which maps
K(v,c) into K.

Now, let z € K (v, ¢). Then v(z) = z(r;) = ¢, so

(3.5) Izl =

™+ 1
Having in mind assumption (Hs), we get

v(Az) = Az(ry)
= &ry +/{; sf(s,z(s))ds + ?"1/ f(s,z(s))ds

> ¢ér +/ sf(s,z(s))ds +T1/ f(s,z(s))ds
[0,r1]N[8,+00) [r1,00)N[6,400)

2 €T+ /[(J,n]n[a,+oo) sv(s)w(z(s))ds + / v(s)w(z(s))ds

[r1,00)N[6,+00)

>&ér + f sv(s)w(z(8))ds + r1 / v(s)w(z(d))ds.
[0,71]N[8,+00) [r1,00)N[8,+00)
So, since z € K, we have

sv(s)w(d||z||g)ds + 1 f v(s)w(d||z||g)ds

[r1,00)M[6,+00)

Y(Az) = &ry +/

[U,T’1]ﬂ[5,+oo)

=¢&r +w(d||z||g) {f sv(s)ds + 7"1/ v(s)ds
[0,r1]N[8,+00)

[r1,00)N[4,+00)
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At this point, we use (3.5) and we get

) [/ sv(s)ds + ?"1/ v(s)ds}
L LariiiiBased [r1,:00)[6,+00)

Fit
=&ry +w(py) [ sv(s)ds + T1/ ’U(S)dSJ :
on]n [6,400) [r1,00)M[d,+00)
3),

Using hypothesis (H

v(Az) > &ry + w(cﬁ

we conclude that
Y(4z) > S (r +1),

so condition () of Theorem 2.5 is satisfied.

Now let z € 0K(6,b). Then 6(z) = z(r3) = b, so since z € K, we
have
x(rg) b

(i)

lzllz =M.

Consequently, by assumption (Hl), we have
0(Az) = Az(ry)

=£&ry + /T2 sf(s,z(s))ds +rq jrm f(s,z(s))ds
0 9

&t 0 /02 su(s)L (ff)s) ds+rs /: u(s)L (f(—i) ds

[s.¢]

<éry+ /m su(s)L(M)ds + 7"2/ u(s)L(M)ds

= &y + L(M) [ f " su(s)ds + rzzzmu(s)ds] -

G(Ax) _<_ M’I"g = b,

which means that condition (i:) of Theorem 2.5 is satisfied.
Now, define the function y : R* — R with y(t) = £. Then, it is
obvious that a(y) = § < a, so K(o,a) # 0. Also, since a(z) = z(rs) =

z(rz) _  a
a, we have Bl — Tarir 80

So

a
3 > —.
(3.6) Iels >

As in the case of the functional v above, we get
a(Az) = Az(rs)

> &rs —i-f sv(s)w(z(d))ds + 7“3/ v(s)w(z(d))ds.
[0,73]N[8,400) - [r3,00)M[d,+00)
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So, since z € K, we have

a(Az) > Erstw(d||z|| g) [/[0 . )sv(s)d5+r3/

[r3,00)N[8,+00)

v(s)ds}
and using (3.6) we get

a(Az) > €rs +w(ps) [/
0

Therefore, by hypothesis (Hs), we conclude that
a(Az) > %(rs +1),

so condition (#iz) of Theorem 2.5 is satisfied.
At this point, we apply Theorem 2.5 to obtain that operator A has

at least two fixed points z and Z belonging to K (v, c) such that

sv(s)ds + 7‘3f v(s)ds} :

,r3]N[8,+00) [r3,00)N[6,+00)

z(rs) > %3(?"3 +1), z(ry) < Mry
and

F(r1) < %(ﬁ +1), F(rs) > Mrs.

This concludes the proof. O
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